
1

Growing a general purpose language
Functions, scopes and famous train wrecks.
CS164: Introduction to Programming Languages and Compilers

Fall 2009

Instructor: Ras Bodik

GSI: Joel Galenson

Courseware: Tim Trutna

UC Berkeley

Administrativia

Sign up your Project Teams.

Milestone of Project 1 due on Monday!

– Set up your repository.

– Understand the provided Earley parser code. Add
visualization.

– Understand the provided front-end parser.

– Modify the provided Earley code to use the grammar AST
generated by the front-end parser.

– Add a lexer.

– Test the resulting recognizer.

Turn off your cell phones and close laptops.
Or face difficult questions.

2

A visualization of Earley parse

3

source code for this graph has been posted in the Project 2 document

Remember life before parsing …

Unit-crunching Super-calculator: key plot turns

SI m, kg, s

N = kg m / s^2

J = N m

cal = 4.184 J

powerbar = 250 cal

0.5 hr * 170 lb * (0.00379 m^2/s^3) in powerbar

--> 0.50291 powerbar

4

5

Take cs164. Become unoffshorable.

“We design them here, but the labor is cheaper in Hell.”

Growing a general-purpose language

6

A challenge problem we ran into

Do you want to retype the formula after each run?

0.5 hr * 170 lb * (0.00379 m^2/s^3)

Our solution

c = 170 lb * (0.00379 m^2/s^3)

28 min * c

1.1 hour * c

Good: should time be in minutes or hours?

No need to remember. Calculator converts automatically!

Bad: the real formula depends on speed. Approx:

30 min * 170 lb * (6 mph^2 * const m^2/s^3)

We need a better way to reuse our code
7

Reuse code (avoid retyping, debugging, etc)

Previously, we remembered the value of c

c = 170 lb * (0.00379 m^2/s^3)

This fails when we need to reuse this calculation:

30 min * 170 lb * ((3 mile / 30 min)^2 * const m^2/s^3)

8

Reusing an expression

Parameterize it!

time * weight * ((distance / time)^2 * const m^2/s^3)

And give it a name!

def nrg: time * weight * ((distance /time)^2 * const m^2/s^3)

It is now reusable – if we can instantiate it with values.

time = 30 min; distance = 3 miles; weight = 170lb;

nrg()

What have we deisgned:

The named expression has free variables.

Free variables are bound when the expression is evaluated.

They are bound to definitions in the evaluation environment.
9

Better

We reused the expression but did not hide its details.

the names of free variables remained visible

A fix?

def nrg(time, weight,distance):

time * weight * ((distance /time)^2 * const m^2/s^3)

Call args set the values of formal function parameters

nrg(30 min, 170lb, 3 miles)

nrg is a function with no free variables.

it is an abstraction (hides the implementation)

nrg's body does have free variables

these are bound to parameters (which are definitions)
10

Our calculator language with functions

S ::= S ; S | E | E in C | ID = E | SI ID | def ID (IDlist) : E

C ::= U | C / C | C * C | C C | C^n

E ::= n | ID | E op E | (E) | f{ Elist } | f{}

Elist ::= E | Elist , E

Idlist ::= [similar]

op ::= + | - | '*' | ε | /

11

Let's simplify it for further development

Drop unit. Use the more usual syntax.

S ::= S ; S | E | def ID (ARGs) { E }

E ::= n | ID | E op E | (E) | f(Elist) | f()

We omit the obvious when this causes no confusion.

Elist ::= E | Elist , E

op ::= + | - | * | /

We dropped ε for multiplication.
12

Notice absence of variable definition

How do we introduce a local variable?

13

Two alternatives

Explicit definition (eg Algol, JavaScript)

def f(x) {

var a

a = x+1

return a*a

}

Second choice (Python)

def f(x) {

a = x+1

return a*a

}

14

Implementation (outline)

When a function invoked:

1. create an new scope for the function

2. scan the body: if function body contains 'x = E', then …

3. bind x: add x to the scope of the function

Read a variable:

1. look up the variable in the environment

2. check function scope first, then the global scope

We'll make this more precise shortly

15

What's horrible about this code?

def helper(x,y,date,time,debug,anotherFlag) {
if (debug && anotherFlag > 2)
doSomethingWith(x,y,date,time)

}
def main(args) {
date = extractDate(args)
time = extractTime(args)
helper(12,13, date, time, true, 2.3)
...
helper(10,14, date, time, true, 1.9)
…
helper(10,11, date, time, true, 2.3)

}

16

Your proposals

17

Allow nested function definition

def main(args) {

date = extractDate(args)

time = extractTime(args)

debug = true

def helper(x, y, anotherFlag) {
if (debug && anotherFlag > 2)

doSomethingWith(x,y,date,time)

}

helper(12, 13, 2.3)

helper(10, 14, 1.9)

helper(10, 11, 2.3)

}
18

A historical puzzle (Python version < 2.1)

An buggy program
def enclosing_function():

def factorial(n):
if n < 2:

return 1
return n * factorial(n - 1)

print factorial(5)

A correct program
def factorial(n):

if n < 2:
return 1

return n * factorial(n - 1)
print factorial(5)

19
video

http://www.metacafe.com/watch/338502/2_trains_collide_head_on_at_90_mph_yippee/

Explanation (from PEP-3104)

• Before version 2.1, Python's treatment of scopes resembled
that of standard C: within a file there were only two levels of
scope, global and local. In C, this is a natural consequence of
the fact that function definitions cannot be nested. But in
Python, though functions are usually defined at the top
level, a function definition can be executed anywhere. This
gave Python the syntactic appearance of nested scoping
without the semantics, and yielded inconsistencies that
were surprising to some programmers.

This violates the intuition that a function should behave
consistently when placed in different contexts.

20

Scopes

Scope: defines where you can use a name

def enclosing_function():

def factorial(n):

if n < 2:

return 1
return n * factorial(n - 1)

print factorial(5)

21

22

Summary

Interaction of two language features:

Scoping rules

Nested functions

Features must often be considered in concert

23

A robust rule for looking up name bindings

Assumptions:

1. We have nested scopes.

2. We may have multiple definitions of same name.

new definition may hide other definitions

3. We have recursion.

may introduce unbounded number of definitions, scopes

24

Example

Program Environment

25

Rules

At function call:

At return:

When a name is bound:

When a name is referenced:

26

Control structures

27

Defining control structures

They change the flow of the program

– if (E) S else S

– while (E) S

– while (E) S finally E

There are many more control structures

– exceptions

– coroutines

– continuations

28

Assume we are given a built-in conditional

Meaning of cond(v1,v2,v3)

if v1 == true then evaluate to v2,

else evaluate to v3

Can we use it to implement if, while, etc?

def fact(n) {

cond(n<1, 1, n*fact(n-1))

}

29

Ifelse

Can we implement ifelse with just functions?

def ifelse (, ,) { # in terms of cond

}

30

scratch space

31

If that does not evaluate both branches

def fact(n) {

ret = 0

def true_branch() { ret = 1 }

def false_branch() { ret = n * fact(n-1) }

if (n<2, true_branch, false_branch)

ret

}

def ifelse (e, th, el) {

x = cond(e, th, el)

x()

} 32

Anonymous functions

33

def fact(n) {

ret = 0

if (n<2, function() { ret = 1 }

, function() { ret = n*fact(n-1) }
)

ret

}

If

def if(e,th) {

cond(e,th, lambda(){})()

}

34

Aside: first-class functions and function defs

35

Anonymous functions clarify function definitions

def fact(n) { body }

can be expressed as syntactic sugar over assignments
to variables

x = function(n) { body }

First-class functions are just values stored in variables.

While

Can we develop while using first-class functions?

36

While

count = 5

fact = 1

while(lambda() { count > 0 },

lambda() {

count = count - 1

fact := fact * count }

)

while (e, body) {

x = e()

if (x, body)

if (x, while(e, body))

}
37

Smalltalk/Ruby actually use this model

Control structure not part of the language

Made acceptable by special syntax for blocks

which are (almost) anonymous functions

Smalltalk:

| count factorial |

count := 5.

factorial := 1.

[count > 0] whileTrue:

[factorial := factorial * (count := count - 1)]

Transcript show: factorial
38

Same in Ruby

count = 5

fact = 1

while count > 0 do

count = count – 1

fact = fact * 1

end

39

Also see

Guy Lewis Steele, Jr.:

"Lambda: The Ultimate GOTO" pdf

40

http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-443.pdf

Now put this to a test

41

count = 5

fact = 1

while(lambda() { count > 0 },

lambda() {

count = count - 1

fact := fact * count }

)

Now put this to a test

42

x = 5 replace count with x

fact = 1

while(lambda() { x > 0 },

lambda() {

x = x - 1

fact := fact * count }

)

while (e, body) {

x = e()

if (x, while(e, body), function(){})

}

43

Our rule (dynamic scoping) is flawed

Dynamic scoping:

find the binding of a name in the execution environment

that is, in the stack of scopes that corresponds to call stack

binds x in the body of while loop to x in the while loop

Thus is non-compositional:

variables in while not hidden

hence hard to write reliable modular code

44

Find the right rule for rule binding

45

x = 5

fact = 1

while(lambda() { x > 0 },

lambda() {

x = x - 1

fact := fact * count }

)

while (e, body) {

x = e()

if (x, while(e, body), function(){})

}

scratch space

46

Closures

Closure: a pair (function, environment)

this is our new "function value representation"

function:

a first-class function (it's a value, we can pass it around)

with free variables

environment:

at the time when function is created

used to bind free variables in function

This is called static (or lexical) scoping

47

Cool closures

From the Lua book

names = { "Peter", "Paul", "Mary" }

grades = { Mary: 10, Paul: 7, Paul: 8 }

sort(names, function(n1,n2) {

grades[n1] > grades[n2]

}

48

Another one

def derivative(f)

delta = 0.0001

function(x) {

(f(x+delta) – f(x))/delta

}

}

c = derivative(sin)

print(cos(10), c(10))

--> -0.83907, -0.83907

49

And another one, in Lua:

function newCounter() {

local i = 0

return function ()

i = i + 1

return i

end

end

c1 = newCounter()

c2 = newCounter()

print(c1())

print(c2())

print(c1())
50

In our language

def newCounter() {

i = 0

function ()

i = i + 1

i

end

end

c1 = newCounter()

c2 = newCounter()

print(c1())

print(c2())

print(c1())
51

In Python

def foo():

a = 1

def bar():

a = a + 1 local variable 'a' referenced before assignment

return a

return bar

f = foo()

print(f())

print(f())

52

Same in JS (works just fine)

function foo() {

var a = 1

function bar() {

a = a + 1

return a

}

return bar

}

f = foo()

console.log(f()) --> 2

console.log(f()) --> 3

53

Attempt to fix the semantics

def foo():

a = 1

def bar():

a = a + 1

return a

return bar

Current rule: If a name binding operation occurs anywhere within
a code block, all uses of the name within the block are treated as
references to the current block['s binding].

54

55

Fix in Python 3, a new version of language

def foo():

a = 1

def bar():

nonlocal a

a = a + 1

return a

return bar

f = foo()

56

57

