## Growing a general purpose language

Functions, scopes and famous train wrecks.
CS164: Introduction to Programming Languages and Compilers

Fall 2009

Instructor: Ras Bodik
GSI: Joel Galenson
Courseware: Tim Trutna
UC Berkeley


## Administrativia

## Sign up your Project Teams.

## Milestone of Project 1 due on Monday!

- Set up your repository.
- Understand the provided Earley parser code. Add visualization.
- Understand the provided front-end parser.
- Modify the provided Earley code to use the grammar AST generated by the front-end parser.
- Add a lexer.
- Test the resulting recognizer.

Turn off your cell phones and close laptops.
Or face difficult questions.

## A visualization of Earley parse

source code for this graph has been posted in the Project 2 document


## Remember life before parsing ...

## Unit-crunching Super-calculator: key plot turns

SI m, kg, s
$\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{\wedge} 2$
$\mathrm{J}=\mathrm{N} \mathrm{m}$
$\mathrm{cal}=4.184 \mathrm{~J}$
powerbar = 250 cal
0.5 hr * 170 lb * ( $0.00379 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3$ ) in powerbar
--> 0.50291 powerbar

## Take cs164. Become unoffshorable.


"We design them here, but the labor is cheaper in Hell."

Growing a general-purpose language

## A challenge problem we ran into

Do you want to retype the formula after each run?
0.5 hr * 170 lb * ( $0.00379 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3$ )

Our solution
$\mathrm{c}=170 \mathrm{lb} *\left(0.00379 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3\right)$
28 min * c
1.1 hour * c

Good: should time be in minutes or hours?
No need to remember. Calculator converts automatically!
Bad: the real formula depends on speed. Approx:
30 min * 170 lb * ( $6 \mathrm{mph}^{\wedge} 2$ * const $\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3$ )
$\rightarrow$ We need a better way to reuse our code

## Reuse code (avoid retyping, debugging, etc)

Previously, we remembered the value of $c$

$$
\mathrm{c}=170 \mathrm{lb} \text { * }\left(0.00379 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3\right)
$$

This fails when we need to reuse this calculation:
$30 \mathrm{~min} * 170 \mathrm{lb}$ * ( $(3 \text { mile } / 30 \mathrm{~min})^{\wedge} 2$ * const $\left.\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3\right)$

## Reusing an expression

## Parameterize it!

time * weight * ( (distance / time) ${ }^{\wedge} 2 *$ const $\left.\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3\right)$
And give it a name!
def nrg: time * weight * ((distance /time) $)^{\wedge} 2$ * const $\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3$ )
It is now reusable - if we can instantiate it with values.
time $=30 \mathrm{~min}$; distance $=3 \mathrm{miles}$; weight $=170 \mathrm{lb}$;
nrg()


What have we defisgned:
The named expression has free variables.
Free variables are bound when the expression is evaluated.
They are bound to definitions in the evaluation environment.

## Better

We reused the expression but did not hide its details. the names of free variables remained visible
A fix?
def nrg(time, weight,distance):
time * weight * ((distance /time) $)^{\wedge} 2$ * const $\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 3$ )
Call args set the values of formal function parameters nrg( $30 \mathrm{~min}, 17 \mathrm{olb}, 3$ miles)
nrg is a function with no free variables.
it is an abstraction (hides the implementation)
nrg's body does have free variables
these are bound to parameters (which are definitions)

## Our calculator language with functions

$\mathrm{S}::=\mathrm{S} ; \mathrm{S}|\mathrm{E}| \mathrm{E}$ in $\mathrm{C}|\mathrm{ID}=\mathrm{E}| \mathrm{SIID} \mid$ def ID (IDlist $): \mathrm{E}$
$C::=U|C / C| C * C|C C| C^{\wedge} n$
$\mathrm{E}::=\mathrm{n}|\mathrm{ID}| \mathrm{E}$ op $\mathrm{E}|(\mathrm{E})| \mathrm{f}\{$ Elist $\} \mid \mathrm{f}\{ \}$
Elist ::= E|Elist, E
Idlist ::= [similar]
op ::=+|-|'*'| $\mid$ |/

$$
f *(g)
$$

## Let's simplify it for further development

Drop unit. Use the more usual syntax.

$$
\begin{aligned}
& S::=\frac{S ; S|E| \operatorname{def} \operatorname{ID}(\text { ARGs })\{E\}}{E::=\underline{n}|\underline{I D}| E \operatorname{op~E}|(E)| f(\text { Elist }) \mid f()}
\end{aligned}
$$

We omit the obvious when this causes no confusion.

$$
\begin{aligned}
& \text { Elist ::= E | Elist , E } \\
& \mathrm{op}::=+|-| \text { * }|\mid
\end{aligned}
$$

We dropped $\varepsilon$ for multiplication.

Notice absence of variable definition

How do we introduce a local variable?
$\operatorname{def} f(x, y) \xi$
$\qquad$
defines a new load or
not an introductring $z$


## Two alternatives

## Explicit definition (eg Algol, JavaScript)

```
deff(x) {
vara
\(\mathrm{a}=\mathrm{x}+1\)
return a*a
\}
```

Second choice (Python)
$\operatorname{def} f(x)\{$
$g(\operatorname{sha} a$
$a=x+1$
return $a * a$
\}

## Implementation (outline)

When a function invoked:

1. create an new scope for the function
2. scan the body: if function body contains ' $x=E$ ', then ...
3. bind $x$ : add $x$ to the scope of the function

Read a variable:

1. look up the variable in the environment
2. check function scope first, then the global scope

We'll make this more precise shortly

## What's horrible about this code?

def helper(x,y,date,time, debug, anotherFlag) \{ if (debug \&\& anotherFlag > 2)
doSomethingWith( $x, y$, date,time)
\}
def main(args) \{
date = extractDate(args)
time = extractTime(args)
helper(12,13, date, time, true, 2.3)
helper(10,14, date, time, true, 1.9)
helper(10,11, date, time, true, 2.3) \}

Your proposals

Allow nested function definition

```
    def main(args) {
        date = extractDate(args)
    time)}= \mathrm{ extractTime(args) bindings
        debug = true
        def helper( }x,y\mathrm{ , anotherFlag) {
            if (debug && anotherFlag > 2)
                doSomethingWith(x,y,date, time)
    }
    helper|(12, 13, 2.3)
    h="\"."'per(10, 14, 1.9)
    helper(10, 11, 2.3)
                    nonlocals
    }
```


## A historical puzzle (Python version < 2.1)

An buggy program
def enclosing_function(): def factorial( $n$ ):
 deffactorial(n):
if n < 2: return 1
return $n$ * factorialy $(\mathrm{n}-1)$ print factorial(5)

## Explanation (from PEP-3104)

- Before version 2.1, Python's treatment of scopes resembled that of standard C: within a file there were only two levels of scope, global and local. In C, this is a natural consequence of the fact that function definitions cannot be nested. But in Python, though functions are usually defined at the top level, a function definition can be executed anywhere. This gave Python the syntactic appearance of nested scoping without the semantics, and yielded inconsistencies that were surprising to some programmers.
This violates the intuition that a function should behave consistently when placed in different contexts.


## Scopes

## Scope: defines where you can use a name

## def enclosing_function():

def factorial(n):

$$
\text { if } n<2 \text { : }
$$

return 1
return $n$ * factorial(n - 1)
print factorial(5)


## Summary

## Interaction of two language features:

Scoping rules

Nested functions

Features must often be considered in concert

## A robust rule for looking up name bindings

## Assumptions:

1. We have nested scopes.
2. We may have multiple definitions of same name.
new definition may hide other definitions
3. We have recursion.
may introduce unbounded number of definitions, scopes

Example


Rules

At function call:
create a scope push it
At return: pop a scope
When a name is bound: at at $x=$ add it to the stope
When a name is referenced:
balk scopes down the stack, looking for the name

## Control structures

## Defining control structures

They change the flow of the program

- if (E) S else S
- while (E) S
- while (E) S finally E

There are many more control structures

- exceptions
- coroutines
- continuations

Assume we are given a builtin conditional

Meaning of cond(v1,v2,v3)
vi? va: vS
if $\mathrm{v} 1==$ true then evaluate to v 2 , else evaluate to v 3

Can we use it to implement if, while, etc?

$$
\begin{aligned}
& \text { def fact(n) \{ } \\
& \text { cond(n<1, 1, n*fact(n-1)) } \\
& \text { \} } \\
& \text { fact ( } n-2 \text { ) } \\
& \text { fact }(n-5)
\end{aligned}
$$

## Ifelse

## Can we implement ifelse with just functions?

$$
\begin{aligned}
& \text { def ifelse }(C, \text { th, el })\{\quad \# \text { in terms of cond } \\
& X=\operatorname{cond}(C, \text { th , el }) \\
& X()
\end{aligned}
$$

$$
\text { \} }
$$

## scratch space

## If that does not evaluate both branches

def fact (n) \{

## pet $=0$

 def true_branch() \{ ret $=1$ \}def false_branch() \{ ret $=\mathrm{n} *$ fact $(\mathrm{n}-1)\}$
$i f_{\text {de }}(n<2$, true_branch, false_branch) ret
\}
def ifelse (e, th, el) \{

$$
x=\operatorname{cond}(e, t h, e l)
$$

$x$ ()
\}

## Anonymous functions

def fact(n) \{
ret $=0$
if ( $n<2$, function() \{ret $=1\}$
, function() \{ret $=n^{*}$ fact( $\left.n-1\right)$ \}

## ) <br> pet

\}

If
def if(e,th) \{
cond(e,th, lambda()\{\} )()
\}

## Aside: first-class functions and function defs

Anonymous functions clarify function definitions

```
def fact(n) { body }
```

can be expressed as syntactic sugar over assignments to variables
fact
$\neq$ function ( $n$ ) \{ body \}

First-class functions are just values stored in variables.

## While

## Can we develop while using first-class functions?

## While

```
count = 5
fact = 1
while( lambda() { count > 0 },
    lambda() {
                                    count = count - 1
                                    fact := fact * count }
)
while (e, body) {
    x = e()
    if (x, body)
    if (x, while(e, body))
}
```


## Smalltalk/Ruby actually use this model

Control structure not part of the language
Made acceptable by special syntax for blocks
which are (almost) anonymous functions
Smalltalk:
| count factorial |
count := 5. Whitetrue ( $B 1, B 2$ )
factorial :=1.
$\left[\begin{array}{c}\text { count > 0 0 } \\ R 1\end{array}\right]$ whileTrue:
[ factorial := factorial * (count := count -1)]
Transcript show: factorial

Same in Ruby


## Also see

Guy Lewis Steele, Jr.:
"Lambda: The Ultimate GOTO" pdf

## Now put this to a test

$$
\begin{aligned}
& \text { count }=5 \\
& \text { fact }=1 \\
& \text { while( lambda() } \begin{aligned}
& 1 \text { count }>0\}, \\
& \text { lambda() }\{ \\
& \text { count }=\text { count }-1 \\
& \text { fact }:=\text { fact } * \text { count }\}
\end{aligned}
\end{aligned}
$$

)

## Now put this to a test

```
x = 5 replace count with x
fact = 1
while( lambda() { x > 0 },
    lambda() {
    x = x - 1
    fact := fact * count }
)
while (e, body) {
    x = e()
    if (x, while(e, body), function(){} )
}
```



## Our rule (dynamic scoping) is flawed

## Dynamic scoping:

find the binding of a name in the execution environment
that is, in the stack of scopes that corresponds to call stack
binds $x$ in the body of while loop to $x$ in the while loop

Thus is non-compositional:
variables in while not hidden
hence hard to write reliable modular code

## Find the right rule for rule binding

```
x = 5
fact = 1
while( lambda() { x > 0 },
    lambda() {
                                    x = x - 1
                                    fact := fact * count }
)
while (e, body) {
    x = e()
    if (x, while(e, body), function(){} )
}
```


## scratch space

## Closures

Closure: a pair (function, environment) this is our new "function value representation"
function:
a first-class function (it's a value, we can pass it around) with free variables
environment:
at the time when function is created
used to bind free variables in function
This is called static (or lexical) scoping

## Cool closures

From the Lua book
names = \{ "Peter", "Paul", "Mary" \}
grades = \{ Mary: 10, Paul: 7, Paul: 8 \}
sort(names, function(n1,n2) \{
grades[n1] > grades[n2]
\}

## Another one

```
def derivative(f)
    delta = 0.0001
    function(x) {
                (f(x+delta) - f(x))/delta
}
}
c = derivative(sin)
print(cos(10), c(10))
    --> -0.83907, -0.83907
```


## And another one, in Lua:

function newCounter() \{ local $\mathrm{i}=0$ return function ()
$\mathrm{i}=\mathrm{i}+1$
return i
end
end
C1 = newCounter()
c2 = newCounter()
print(c1())
print(c2())
print(c1())

## In our language

def newCounter() \{
$\mathrm{i}=0$
function ()

$$
\begin{aligned}
& i=i+1 \\
& i \\
& \text { end }
\end{aligned}
$$

end
C1 = newCounter()
c2 $=$ newCounter()
print(c1())
print(c2())
print(c1())

## In Python

deffoo():
$\mathrm{a}=1$
def bar():
$a=a+1$ local variable 'a' referenced before assignment return a
return bar
$\mathrm{f}=\mathrm{foo}($ )
print(f())
print(f())

## Same in JS (works just fine)

```
function foo() {
        var a = 1
        function bar() {
            a = a + 1
            return a
        }
    return bar
}
f= foo()
console.log(f()) --> 2
console.log(f()) --> 3
```


## Attempt to fix the semantics

```
def foo():
a=1
def bar():
    a = a + 1
    return a
return bar
```

Current rule: If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as references to the current block['s binding].


## Fix in Python 3, a new version of language

def foo():
$a=1$
def bar():
nonlocal a
$a \operatorname{a}+1$
return a
return bar
$f=f o o()$

LESSONS
1)
2)
3)

