
1

String Manipulation Languages
CS164: Introduction to Programming Languages and Compilers

Lectures 2 and 3, Fall 2009

Instructor: Ras Bodik

GSI: Joel Galenson

UC Berkeley

Administrativia

Section times poll:

Thu 2-3 and Wed 11-12 most popular, in that order.

We asked for a room. We’ll see if we get one.

Office hours (Ras):

Tu 2:30-3:30, Th 5-6.

in 569 Soda (ParLab) send email if door is closer after hours

First project assigned tonight. See course wiki.

http://cs164fa09.pbworks.com/

Please turn off your cell phones and close laptops. 2

Outline for today

• String processing: five motivating applications

• Discovering a suitable programming model

• Regular expressions and their interpreter

• Non-deterministic finite automaton

• Regular expression compiler

3

1. Web scraping and rewriting

Your first project (out today). Using GreaseMonkey.

Opportunity: Web is more readable when you view
the print-friendly, ad-free pages. Automate this!

Problem: Your script will rewrite links on a page to go
directly to a print-friendly version of target page.

How: You will have to fetch the target of the link, look
in the target HTML for a best-guess link to print-
friendly alternative page, then rewrite the link.

4

2. Cucumber: a Ruby testing framework

Cucumber test file (format is customizable):
Scenario: Test the banking web service

Given I log in as "bonnie" with password "clyde"

When I go to "Accounts"

Then I should see a link "Our Robbery Savings"

When I follow this link

Then I the value of "Interest" should be "$1,024.00"

We could interpret this with a GreaseMonkey script:
"Given" clause makes script go to web site and enter login/password.

"When" clause clicks on the link Accounts.

"Then" clause tests that resulting page contains a link to given account.

Programming problem:

how to customize a GM script for a new a test file format?
5

3. Lexical analysis in compiler/interpreter

Input: a program
function timedCount() { // my function

document.getElementById('txt').value=c;

}

Output: a sequence of tokens
FUNCTION, ID("timedCount"), LPAR, RPAR, LCUR,
ID("document"), DOT, ID("getElementById"), LPAR,
STRING("txt"), RPAR, DOT, ID("value"), ASGN, ID("c"),
SEMI, RCUR

Our problem: how to concisely describe the tokens

6

Notes on lexical analysis

When needed, token is associated with its lexeme

– Lexer partitions the input into lexemes

Whitespace and comments are skipped

– In which language cannot whitespace be skipped?

Stream of tokens is fed to compiler

For bored students: typically, tokens flow to compiler, and
no information flows back. In which language does the
compiler need to communicate back to lexer?
Give scenario.

7

4. File name processing languages

In shell scripts and IDEs:

Eclipse translates this line into arguments passed to
the interpreter when the program is invoked

args = { "--inputDir", "c:\\wspace\\MyDirectory",
"--inputDir", ".\\temp dir" }

Variable substitution, character escaping, quotes, …

trickier than it seems (Eclipse got this language wrong)

8

5. Search for strings in text editors

Imagine you want to search for names containing
a ' and correct them. Examples:

D'Souza --> D’Souza

D`Souza --> D’Souza

Your replacement should avoid quote characters used
as quotations:

`quoted text’

9

Our plan on string processing languages

Design a small language for string processing

– find a string

– extract parts from it

Develop an efficient implementation

Also, interesting applications

and fundamental algorithms

10

Let's write a scanner (lexical analyzer)

First we'll write it by hand, in an imperative language

• We'll examine the repetitious plumbing in the scanner

• Then We'll hide the plumbing by abstracting it away

A simple scanner will do. Only four tokens:

TOKEN Lexeme

ID a sequence of one or more letters or
digits starting with a letter

EQUALS “==“

PLUS “+”

TIMES “*”

Imperative scanner

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

Note: this scanner does not handle errors. What happens if the input is

"var1 = var2" It should be var1 == var2

An error should be reported at around '='.

Imperative scanner

You could write your entire scanner in this style
– and for small scanners this style is appropriate

Why does this code breaks as the task gets bigger? Try to add:
– lexemes that start with the same string: “if” and “iffy”

– C-style comments: /* anything here /* nested comments */ */

– string literals with escape sequences: “…\t … \”…”

– error handling, e.g., “string literal missing a closing quote”

Real-world imperative scanners get unwieldy
– lexical structure of the scanned language not obvious

– scanner code obscured it by spreading around the string
comparisons and other actions

Real scanner get unwieldy (ex: JavaScript)

14

From http://mxr.mozilla.org/mozilla/source/js/src/jsscan.c

Imperative Lexer: what vs. how

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

 little logic, much plumbing

Identifying the plumbing (the how, part 1)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

 characters are read always the same way

Identifying the plumbing (the how, part 2)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

 tokens are always return-ed

Identifying the plumbing (the how, part3)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

 the lookahead is explicit (programmer-managed)

Identifying the plumbing (the how)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

must build decision tree out of nested if’s (yuck!)

Can we hide the plumbing?

In a cleaner code, we want to avoid the following
– if’s and while’s to construct the decision tree

– calls to the read method

– explicit return statements

– explicit lookahead code

Ideally, we want code that looks like the specification:

TOKEN Lexeme

ID a sequence of one or more letters or digits starting with a
letter

EQUALS “==“

PLUS “+”

TIMES “*”

Separate out the how (plumbing)

The code actually follows a simple pattern:

– read next char,

– compare it with some predetermined char

– if matched, jump to a different read of next char

– repeat this until a lexeme built; then return a token.

Is there already a programming language for
encoding this concisely?

– yes, finite-state automata!

– finite: number of states is fixed, not input dependent

read a char read a char
return
a token

compare with c1 compare with c2

Separate out the what

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) {

c=NextChar();

while (c is a letter or digit) { c=NextChar(); }

undoNextChar(c);

return ID;

}

Here is the automaton; we’ll refine it later

ID

TIMES

PLUS

EQUALS
==

+

*
letter

letter or digit

letter or digit

NOT letter or digit
action: undoNextChar

A declarative scanner

Part 1: declarative (the what)

describe each token as a finite automaton
• must be supplied for each scanner, of course (it specifies the

lexical properties of the input language)

Part 2: imperative (the how)

connect these automata into a scanner automaton
• common to all scanners (like a library)

• responsible for the mechanics of scanning

Declarative programming

If we describe the scanner with finite automata, we
allow the programmer to focus on:

• what the lexer should do,

• rather than how it should be done.

how: imperative programming

what: declarative programming

declarative programming is usually preferable

Blog post for today

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

…

1957 - John Backus and IBM create FORTRAN. There's nothing funny about IBM or
FORTRAN. It is a syntax error to write FORTRAN while not wearing a blue tie.

…

1964 - John Kemeny and Thomas Kurtz create BASIC, an unstructured programming
language for non-computer scientists.

1965 - Kemeny and Kurtz go to 1964.

…

1980 - Alan Kay creates Smalltalk and invents the term "object oriented." When
asked what that means he replies, "Smalltalk programs are just objects." When
asked what objects are made of he replies, "objects." When asked again he says
"look, it's all objects all the way down. Until you reach turtles.“

…

1987 - Larry Wall falls asleep and hits Larry Wall's forehead on the keyboard. Upon
waking Larry Wall decides that the string of characters on Larry Wall's monitor
isn't random but an example program in a programming language that God
wants His prophet, Larry Wall, to design. Perl is born. 26

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Now we need a notation for automata

Convenience, clarity dictates a textual language

Kleene invented regular expressions for the purpose:

a.b a followed by b

a* zero or more repetitions of a

a | b a or b

Our example:

27

state state final state
a c

b

Regular expressions

Regular expressions contain:
– characters : these must match the input string

– meta-characters: these serve as operators

Operators can take regular expressions (recursive definition)
char any character is a regular expression

re1.re2 so is re1 followed by re2

re* zero or more repetitions of re

re1 | re2 match re1 or re2

re + one or more instances of re

[1-5] same as (1|2|3|4|5) ; [] denotes a character class

[^”] any character but the quote

\d matches any digit

\w matches any letter
28

Finite automata, in more detail

Deterministic, non-deterministic

29

DFAs

31

Deterministic finite automata (DFA)

We’ll use DFA’s as recognizers:
– recognizer accepts a set of strings, and rejects all others

Ex: in a lexer, DFA tells us if a string is a valid lexeme
– the DFA for identifiers accepts “xyx” but rejects “3e4”.

32

Finite-Automata State Graphs

• A state

• The start state

• A final state

• A transition
a

33

Finite Automata

Transition

s1 
a s2

Is read

In state s1 on input “a” go to state s2

String accepted if

entire string consumed and automaton is in accepting state

Rejected otherwise. Two possibilities for rejection:

– string consumed but not in accepting state

– next input character allows no transition (automaton is
stuck)

34

Deterministic Finite Automata

Example: JavaScript Identifiers
– sequences of 1+ letters or underscores or dollar signs or digits,

starting with a letter or underscore or a dollar sign:

letter | _ | $
letter | _ | $ | digit

S A

35

Example: Integer Literals

DFA that recognizes integer literals

– with an optional + or - sign:

+

digit

S

B

A

-

digit

digit

36

And another (more abstract) example

• Alphabet {0,1}

• What strings does this recognize?

0

1

0

1

0

1

37

Formal Definition

A finite automaton is a 5-tuple (, Q, , q, F) where:

–  : an input alphabet

– Q: a set of states

– q: a start state q

– F: a set of final states F  Q

– : a state transition function: Q x  Q
(i.e., encodes transitions state input state)

Ras Bodik, CS 164,

Spring 2007

38

Language defined by DFA

• The language defined by a DFA is the set of strings
accepted by the DFA.

– in the language of the identifier DFA shown above:
• x, tmp2, XyZzy, position27.

– not in the language of the identifier DFA shown above:
• 123, a?, 13apples.

NFAs

40

Deterministic vs. Nondeterministic Automata

Deterministic Finite Automata (DFA)

– in each state, at most one transition per input character

– no -moves: each transition consumes an input character

Nondeterministic Finite Automata (NFA)

– allows multiple outgoing transitions for one input

– can have -moves

Finite automata need finite memory

– we only need to encode the current state

NFA’s can be in multiple states at once

– still a finite set

41

A simple NFA example

• Alphabet: { 0, 1 }

• Nondeterminism:

– when multiple choices exist, automaton “magically”
guesses which transition to take so that the string can be
accepted

– on input “11” the automaton could be in either state

1

1

42

Epsilon Moves

Another kind of transition: -moves



machine allowed to move from state A to state B
without consuming an input character

A B

43

Execution of Finite Automata

A DFA can take only one path through the state graph

– completely determined by input

NFAs can choose

– whether to make -moves

– which of multiple transitions for a single input to take

– so we think of an NFA as being in one of multiple states
(see next example)

44

Acceptance of NFAs

An NFA can get into multiple states

Input:

0

1

1

0

1 0 1

Rule: NFA accepts if it can get into a final state

Ras Bodik, CS 164,

Spring 2007

45

NFA vs. DFA (1)

NFA’s and DFA’s are equally powerful

– each NFA can be translated into a corresponding DFA
• one that recognizes same strings

– NFAs and DFAs recognize the same set of languages
• called regular languages

NFA’s are more convenient ...

– allow composition of automata

... while DFAs are easier to implement, faster

– there are no choices to consider

– hence automaton always in at most one state

Ras Bodik, CS 164,

Spring 2007

46

NFA vs. DFA (2)

For a given language the NFA can be simpler than a DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

DFA can be exponentially larger than NFA

Compiling r.e. to NFA

How would you proceed?

47

48

Representing regular expressions

We want to compile a r.e. into more efficient code.

How do we represent a r.e.?

(a.c|d.e*)+

First we need to ask: what do we want to represent?

What is a data structure to represent this?

Example

(a.c|d.e*)+

49

50

Regular Expressions to NFA (1)

For each kind of rexp, define an NFA

– Notation: NFA for rexp M

M

• For :


• For literal character a:
a

51

Regular Expressions to NFA (2)

For A . B

A B


For A | B

A

B









52

Regular Expressions to NFA (3)

For A*

A







53

Example of RegExp -> NFA conversion

Consider the regular expression

(1|0)*1

The NFA is

1

0
1

 







 





A B

C

D

E

F

G H I J

Summary of DFA, NFA, Regexp

What you need to understand and remember

– what is DFA, NFA, regular expression

– the three have equal expressive power

– what is the “expressive power”

– you can convert
• RE  NFA  DFA

• NFA  RE

• and hence also DFA  RE, because DFA is a special case of NFA

– NFAs are easier to use, more costly to execute
• NFA emulation O(S2)-times slower than DFA

• conversion NFADFA incurs exponential cost in space

Some of these concepts will be covered in the section
54

55

String Manipulation Languages
CS164: Introduction to Programming Languages and Compilers

Lectures 2 and 3, Fall 2009

Instructor: Ras Bodik

GSI: Joel Galenson

UC Berkeley

Hint to question for bored students

Q: In lexical analysis, tokens typically flow to compiler,
and no information flows back. In which language
does the compiler need to communicate back to
scanner? Give a scenario.

The language: JavaScript

The scenario: consider this code fragment: e/f/g

Find an explanation (coming in a few slides)

56

Overview for today

• Practice and theory remixed

57

Questions about Project 1?

Due in a week

Designed so that you learn a lot by typing very little

58

Remember our string processing problems

1. Web scraping and rewriting (your Project 1)

Find and linkify mailing addresses

2. Cucumber, a Ruby testing framework
When I go to "Accounts" Then I should see link "My Savings"

3. Lexical analysis

float x=3.13 --> FLOATTYPE, ID("x"), EQ, FLOATLIT(3.14)

4. File name manipulation language

${dir}\foo --> "c:\\MyDir\\foo"

5. Search and replace

`quoted text’ D`Souza --> `quoted text’ D’Souza

59

What "language primitives " handle all these?

Accept: the whole string match

Does the entire string s match a pattern r?

Match: a prefix match

Does some prefix of s match a pattern r?

Search: find a substring

Does a substring of s match a pattern r?

Tokenize: Lexical analysis

Partition s into lexemes, each accepted by a pattern r

Extract: as match and search but extract substrings

Pattern r indicates, with (), which substrings to extract

Replace: replace substrings found with a new string
60

String search in JavaScript (for you reference)

Basic search methods for String objects:

"string".indexOf("rin")  2

"string".indexOf(new RegExp("r*n"))  -1

"string".search(new RegExp("r*n"))  4

"string".search(new RegExp("r.*n"))  2

"string".search(/r.*n/)  2

"string".match(/tri|str/)  ["str"]

"string".match(/ri|st/g)  ["st", "ri"]

"string".match(/tri|str/g)  ["str"]

61

Same for Python (for you reference)

Basic search methods for String objects:

re.match(r"tri|rin", "string")  no match

re.search(r"tri|rin", "string").group(0)  'tri'

re.compile(r"tri|str").findall("string")  ['str']

re.compile(r"ri|st").findall("string")  ['st', 'ri']

re.search(r"(tr)|(in)", "string").groups()  ('tr', None)

note: match() expects the match to start at index 0

62

Problem 5: search and replace

Quite a few concepts can be demoed here.

text = " `quoted text’ D`Souza "

Want to convert it to

text = " `quoted text’ D’Souza "

Need to find ` and ' that is surrounded by cap letters

print(re.sub(r"([A-Z])['`]([A-Z])", "\\1\x92\\2", text))

and replace it. Explanations

– Sub replaces first match in text with new string

– \1 stands for text captured by the first group, ([A-Z])

– \\1 makes sure that re engine receives \1

– \x92 is ’
63

Lexical analysis (simplified to its essence)

Given a definition of lexical structure of the language

r = [a-zA-Z][a-zA-Z]* | [0-9]+ | \+ | - | * | / | /[^/]*/g?

partition the input

so that each partition (lexeme) matches pattern r (Cond 1)

What if multiple partitions exists?

that is, multiple ways to split the input

==> Strengthen condition (1) to ensure unique partition

So that the language is unambiguously defined

Common disambiguating rule: maximal munch

Scan left-to right; each lexeme consumes as much as possible
64

Scanning JavaScript (answer to bored Q)

Key fragment of lexical definition (lexemes)

r = [a-zA-Z][a-zA-Z]* | [0-9]+ | \+ | - | * | / | /[^/]*/g?

Consider this input fragment

…e/f/g …

Is it ID,DIV,ID,DIV,ID or ID,REGEX ?

Maximal munch produces the latter.

But we sometimes want the former.

When? Depends on the context.

The parser can tell the scanner whether, when it
encounters '/' it is expecting DIV or REGEX.

65

Another puzzle

Use a regex to test whether a number is prime.

66

Performance depends on more than input size

Consider regular expression X(.+)+X

Input1: "X=================X" match

Input2: "X==================" no match

JavaScript: "X====…========X".search(/X(.+)+X/)

– Match: fast No match: slow

Python: re.search(r'X(.+)+X','=XX======…====X=')

– Match: fast No match: slow

awk: echo '=XX====…=====X=' | gawk '/X(.+)+X/'

– Match: fast No match: fast

67

Blog post of the day

Regular Expressions: Now You Have Two Problems

I love regular expressions. No, I'm not sure you understand: I really love
regular expressions.

You may find it a little odd that a hack who grew up using a language with
the ain't keyword would fall so head over heels in love with something
as obtuse and arcane as regular expressions. I'm not sure how that
works. But it does. Regular expressions rock.They should absolutely be
a key part of every modern coder's toolkit.

If you've ever talked about regular expressions with another programmer,
you've invariably heard this 1997 chestnut:

Some people, when confronted with a problem, think "I
know, I'll use regular expressions." Now they have two
problems.

68

http://www.codinghorror.com/blog/archives/001016.html
http://www.codinghorror.com/blog/archives/000245.html
http://www.codinghorror.com/blog/archives/000245.html
http://www.codinghorror.com/blog/archives/000245.html
http://www.codinghorror.com/blog/archives/000245.html
http://blogs.vertigosoftware.com/jatwood/archive/2005/10/05/1514.aspx
http://blogs.vertigosoftware.com/jatwood/archive/2005/10/05/1514.aspx

69

Representing regular expressions

We want to compile a r.e. into more efficient code.

How do we represent a r.e.?

(a.c|d.e*)+

First we need to ask: what do we want to represent?

What is a data structure to represent this?

Example of abstract syntax tree (AST)

(a.c|d.e*)+

70

71

Regular Expressions to NFA (1)

For each kind of rexp, define an NFA

– Notation: NFA for rexp M

M

• For :


• For literal character a:
a

72

Regular Expressions to NFA (2)

For A . B

A B


For A | B

A

B









73

Regular Expressions to NFA (3)

For A*

A







74

Example of RegExp -> NFA conversion

Consider the regular expression

(1|0)*1

The NFA is

1

0
1

 







 





A B

C

D

E

F

G H I J

Answer to puzzle: Primality Test

First, represent a number n as a unary string

7 == '1111111'

Conveniently, we'll use Python's * operator

str = '1'*n # concatenates '1' n times

n not prime if str can be written as ('1'*k)*m, k>1, m>1

(11+)\1+ # recall that \1 matches whatever (11+) matches

Special handling for n=1. Also, $ matches end of string

re.match(r'1$|(11+)\1+$', '1'*n)

Note this is a regex, not a regular expression

Regexes can tell apart strings that reg expressions can't

76

Expressiveness of recognizers

What does it mean to "tell strings apart"?

Or "test a string" or "recognize a language",
where language = a (potentially infinite) set of strings

It is to accept only a string with that has some property

such as can be written as ('1'*k)*m, k>1, m>1

or contains only balanced parentheses: ((())()(()))

Why can't a reg expression test for ('1'*k)*m, k>1,m>1 ?

Recall reg expression: char . | *

We can use sugar to add e+, by rewriting e+ to e.e*

We can also add e++, which means 2+ of e: e++ --> e.e.e*

77

… continued

So it seems we can test for ('1'*k)*m, k>1,m>1, right?

(1++)++ rewrite 1++ using e++ --> e.e+

(11+)++ rewrite (11+)++ using e++ --> e.e+

(11+)(11+)+

Now why isn't (11+)(11+)+ the same as (11+)\1+ ?

How do we show these test for different property?

78

Example from Jeff Friedl’s book

Imagine you want to parse a config file:

filesToCompile=a.cpp b.cpp

The regex for this command line format:

[a-zA-Z]+=.*

Now let’s allow an optional \n-separated 2nd line:

filesToCompile=a.cpp b.cpp \<\n>

d.cpp e.h

We extend the original regex:

[a-zA-Z]+=.*(\\\n.*)?

This regex does not match our two-line input. Why?

What compiler textbooks don’t teach you

The textbook string matching problem is simple:

Does a regex r match the entire string s?

– a clean statement and suitable for theoretical study

– here is where regexes and FSMs are equivalent

The matching problem in the Real World:

Given a string s and a regex r, find a substring in s matching r.

Do you see the language design issue here?

– There may be many such substrings.

– We need to decide which substring to find.

It is easy to agree where the substring should start:

– the matched substring should be the leftmost match

Two schools of regexes

They differ in where it should end:

Declarative approach: longest of all matches

– conceptually, enumerate all matches and return longest

Operational approach: define behavior of *, | operators

e* match e as many times as possible while allowing the

remainder of the regex t o match

e|e select leftmost choice while allowing remainder to match

[a-zA-Z]+ = .* (\\ \n .*)?

filesToCompile=a.cpp b.cpp \<\n> d.cpp e.h

These are important differences

We saw a non-contrived regex can behave differently

– personal story: I spent 3 hours debugging a similar regex

– despite reading the manual carefully

The (greedy) operational semantics of *

– does not guarantee longest match (in case you need it)

– forces the programmer to reason about backtracking

It seems that backtracking is nice to reason about

– because it’s local: no need to consider the entire regex

– cognitive load is actually higher, as it breaks composition

82

Where in history of re did things go wrong?

It’s tempting to blame perl

– but the greedy regex semantics seems older

– there are other reasons why backtracking is used

Hypothesis 1:creators of re libs knew not that NFA can

– can be the target language for compiling regexes

– find all matches simultaneously (no backtracking)

– be implemented efficiently (convert NFA to DFA)

Hypothesis 2: their hands were tied

– Ken Thompson’s algorithm for re-to-NFA was patented

With backtracking came the greedy semantics

– longest match would be expensive (must try all matches)

– so semantics was defined greedily, and non-compositionally

Concepts

• Syntax tree-directed translation (re to NFA)

• recognizers: tell strings apart

• NFA, DFA, regular expressions = equally powerful

• Syntax sugar: e+ to e.e*

• Compositionality: be weary of greedy semantics

• Metacharacters: characters with special meaning

84

