rfig 1.1 tutorial (incomplete)

 programming figures/slides in RubyPercy Liang

Title of the slide goes here

We can start writing text...
Each string starts a new line.

Let's make this centered

 Still centeredBack to left justified
Right justified
All text is treated as ${ }^{A T} T_{E X}$, so math is easy to do: $\frac{1}{2}-\pi$ By default, text does not autowrap. If it is put into an autowrap function we can make it wrap up to a certain width (10 inches) and obey a certain orientation (flushfull).

Animation

Each slide can produce many PDF pages.
First I appear

Animation

Each slide can produce many PDF pages.
First I appear
I appear on the next slide

Animation

Each slide can produce many PDF pages.
First I appear
I appear on the next slide and so on...

Animation 2

Another way to animate is to specify the levels at which objects appear:
level 0

Animation 2

Another way to animate is to specify the levels at which objects appear:

level 0
level 1

Animation 2

Another way to animate is to specify the levels at which objects appear:
level 2
level 0
level 1

Animation 2

Another way to animate is to specify the levels at which objects appear:
level 2
level 3
level 0
level 1

Transformations

Normal size
Smaller

\square
$\underset{\sim}{0}$
0
0

Slanted
The color can be changed

Many transformations can be strung together

Lists

- Itemized lists are easy to make
- We can also create hierarchical lists:
- Sub bullet 1
- Sub bullet 2

1. Now we can number the points
2. See the numbers increase

Tables

So far, we have just dumped content in a sequential manner.
We would like to format our slides somehow.
There are two ways of doing that: using tables and overlays.
Here is a basic table:
first row, first column second column
second row now last one

We can justify the table and remove the border:

$$
\begin{array}{lll}
\text { aaa } & d & e \\
\text { b } & \text { ccc fff }
\end{array}
$$

If we want tables with just one row or one column, we can use the following shorthand:
row 1
row 2
column 1 column 2

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$ the elements

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$

in this

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$
overlay should be centered

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$
overlay should be centered
whereas the ones

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$
overlay should be centered

here

Overlays

Using overlays, we can place things on top of each other. The pivot specifies the relative positions that should be used to align the objects in the overlay. $0=1$
overlay should be centered
should be right justified

Formatting the slide

We can also change properties of the slide.
Compare this slide with the others to see what has changed.

Graphics

We can integrate figures into our slides fairly easily.
Here is a circle:

We can draw an arrow:
We can go low-level and specify absolute positions:

However, it's much cleaner and modular to use tables when possible:

Imported graphics

One can import jpeg and pdf files:

Flexible relative positioning of objects

We can specify the positions of some objects with respect to others.

A useful primitive to have is to connect two objects with a line:

O
We can also circle objects:
box ellipse

Tables example

A more complicated example of using lots of features:

Tables example

A more complicated example of using lots of features:

Overlays

= w hello

Overlays

Overlays

hello

Overlays

Heyleo

Overlays

Heyleo

Overlays

Heyko
done

Encircling things

redEncircle new object
existing object

Encircling things

 redEncircle new objectexisting object
existing object
encircle this new object
enrect this new object

Lists

1. one

1. one

3. two
4. two dot one

1. one

3. two
4. two dot one
c. two dot two
5. three

Lists

1. one

3. two
4. two dot one
c. two dot two
5. three
6. four
hello ne
7. two
8. two dot one c. two dot two
9. three
10. four

Drawing pictures and post-processing

here

Drawing pictures and post-processing

here
$\stackrel{\square}{\infty}$

shown early

Drawing pictures and post-processing

here

shown early

moved right

Drawing pictures and post-processing

here

Pause levels and variables

A plain table:
1

Pause levels and variables

A plain table:
123
456

Pause levels and variables

A plain table:
123
456
A table with a border:
$\begin{array}{ll}1 & 2 \\ 4 & 3 \\ 4\end{array}$

This is shown when the bordered table is

Pause levels and variables

A plain table:
123
456
A table with a border:

1	2
4	3
4	6

An overlay:
one
This is shown when the bordered table is

Pause levels and variables

A plain table:
123
456
A table with a border:

1	2
4	3
4	6

An overlay:
two
This is shown when the bordered table is

Pause levels and variables

A plain table:
123
456
A table with a border:

1	2	3
4	5	6

An overlay:
three
This is shown when the bordered table is

Pause levels and variables

A plain table:
123
456
A table with a border:

1	2
4	3
4	6

An overlay:
three
This is shown when the bordered table is
This is shown afterwards

More pause levels

Press any key to begin...

More pause levels

Press any key to begin...

${ }^{\partial}{ }^{\partial}$

More pause levels

Press any key to begin...

More pause levels

Press any key to begin...

More pause levels

Press any key to begin...

More pause levels

Press any key to begin...

More pause levels

begin...

More pause levels

begin...
a
reset level

More pause levels

begin...
a b
cd
after in overlay
reset level reset level 2

More pause levels

begin...
ab
cd
after in overlay
reset level reset level 2
after out of overlay: printed after three pauses total

Referencing positions objects without postAdd
ab
$c d$

Referencing positions objects without postAdd
$a b$
$c d$
this is a test

Level strings

$a b e$

Level strings

ab de

Level strings

abcde

Level strings

abcde
A next example in math:

Level strings

abcde
A next example in math:
$x+y$

Level strings

abcde
A next example in math:
$\frac{x+y}{z+w}$

Zooming

$a b c$

Zooming

$a b c$

The letter B

Zooming

$a b c$

The letter B very nice

Zooming

a b c more stuff here

The letter B very nice

Tables and graphs

method	10	100	1000	10000
EM	89	92	95	88
variational	90	94	98	99

Tables and graphs

method	10	100	1000	10000
EM	89	92	95	88
variational	90	94	98	99

Tables and graphs

method	10	100	1000	10000
EM	89	92	95	88
variational	90	94	98	99

Tables and graphs

method	10	100	1000	10000
EM	89	92	95	88
variational	90	94	98	99

Tables and graphs

method	10	100	1000	10000
EM	89	92	95	88
variational	90	94	98	99

Interesting

Changing bounds (on text)

Normal formatting: Using raw bounds: Using standard height:
begin
b
middle
d
60.5 Raw bounds put g higher because it does not have the ascender. Using the standard height makes everything take as much vertical space as an a.
a
b

this should autowrap at 4 inches

if scaled by 0.5 , autowrapping happens at 2
a
b

C

C d

